swift concurrency extras

Useful, testable Swift concurrency.

353
25
Swift

swift-concurrency-extras

CI
Slack

Reliably testable Swift concurrency.

Learn more

This library was designed to support libraries and episodes produced for Point-Free, a
video series exploring the Swift programming language hosted by Brandon Williams and
Stephen Celis.

You can watch all of the episodes here.

video poster image

Motivation

This library comes with a number of tools that make working with Swift concurrency easier and more
testable.

LockIsolated

The LockIsolated type helps wrap other values in an isolated context. It wraps the value in a
class with a lock, which allows you to read and write the value with a synchronous interface.

AnyHashableSendable

The AnyHashableSendable type is a type-erased wrapper like AnyHashable that preserves the
sendability of the underlying value.

Streams

The library comes with numerous helper APIs spread across the two Swift stream types:

  • Swift 5.9’s makeStream(of:) functions have been back-ported. It can be handy in tests that need
    to override a dependency endpoint that returns a stream:

    let screenshots = AsyncStream.makeStream(of: Void.self)
    
    let model = FeatureModel(screenshots: { screenshots.stream })
    
    XCTAssertEqual(model.screenshotCount, 0)
    screenshots.continuation.yield()  // Simulate a screenshot being taken.
    XCTAssertEqual(model.screenshotCount, 1)
    
  • Static AsyncStream.never and AsyncThrowingStream.never helpers are provided that represent
    streams that live forever and never emit. They can be handy in tests that need to override a
    dependency endpoint with a stream that should suspend and never emit for the duration of the
    test.

    let model = FeatureModel(screenshots: { .never })
    
  • Static AsyncStream.finished and AsyncThrowingStream.finished(throwing:) helpers are provided
    that represents streams that complete immediately without emitting. They can be handy in tests
    that need to override a dependency endpoint with a stream that completes/fails immediately.

Tasks

The library enhances the Task type with new functionality.

  • The static function Task.never() can asynchronously return a value of any type, but does so by
    suspending forever. This can be useful for satisfying a dependency requirement in a way that
    does not require you to actually return data from that endpoint.

    For example, suppose you have a dependency client like this:

    struct SettingsClient {
      var fetchSettings: () async throws -> Settings
    }
    

    You can override the client’s fetchSettings endpoint in tests to suspend forever by awaiting
    Task.never():

    SettingsClient(
      fetchSettings: { try await Task.never() }
    )
    
  • Task.cancellableValue is a property that awaits the unstructured task’s value property while
    propagating cancellation from the current async context.

  • Task.megaYield() is a blunt tool that can make flakey async tests a little less flakey by
    suspending the current task a number of times and improve the odds that other async work has
    enough time to start. Prefer the reliability of serial execution instead
    where possible.

Serial execution

Some asynchronous code is notoriously difficult to test in
Swift due to how suspension points are processed by the runtime. The library comes with a static
function, withMainSerialExecutor, that attempts to run all tasks spawned in an operation serially
and deterministically. This function can be used to make asynchronous tests faster and less flakey.

Warning: This API is only intended to be used from tests to make them more reliable. Please do
not use it from application code.

We say that it “attempts to run all tasks spawned in an operation serially and
deterministically” because under the hood it relies on a global, mutable variable in the Swift
runtime to do its job, and there are no scoping guarantees should this mutable variable change
during the operation.

For example, consider the following seemingly simple model that makes a network request and manages
some isLoading state while the request is inflight:

@Observable
class NumberFactModel {
  var fact: String?
  var isLoading = false
  var number = 0

  // Inject the request dependency explicitly to make it testable, but can also
  // be provided via a dependency management library.
  let getFact: (Int) async throws -> String

  func getFactButtonTapped() async {
    self.isLoading = true
    defer { self.isLoading = false }
    do {
      self.fact = try await self.getFact(self.number)
    } catch {
      // TODO: Handle error
    }
  }
}

We would love to be able to write a test that allows us to confirm that the isLoading state
flips to true and then false. You might hope that it is as easy as this:

func testIsLoading() async {
  let model = NumberFactModel(getFact: { 
    "\($0) is a good number." 
  })

  let task = Task { await model.getFactButtonTapped() }
  XCTAssertEqual(model.isLoading, true)
  XCTAssertEqual(model.fact, nil)

  await task.value
  XCTAssertEqual(model.isLoading, false)
  XCTAssertEqual(model.fact, "0 is a good number.")
}

However this fails almost 100% of the time. The problem is that the line immediately after creating
the unstructured Task executes before the line inside the unstructured task, and so we never
detect the moment the isLoading state flips to true.

You might hope you can wiggle yourself in between the moment the getFactButtonTapped method is
called and the moment the request finishes by using a Task.yield:

 func testIsLoading() async {
   let model = NumberFactModel(getFact: { 
     "\($0) is a good number." 
   })

   let task = Task { await model.getFactButtonTapped() }
+  await Task.yield()
   XCTAssertEqual(model.isLoading, true)
   XCTAssertEqual(model.fact, nil)

   await task.value
   XCTAssertEqual(model.isLoading, false)
   XCTAssertEqual(model.fact, "0 is a good number.")
 }

But that still fails the vast majority of times.

These problems, and more, can be fixed by running this entire test on the main serial executor.
You will also have insert a small yield in the getFact endpoint due to Swift’s ability to
inline async closures that do not actually perform async work:

 func testIsLoading() async {
+  await withMainSerialExecutor {
     let model = NumberFactModel(getFact: {
+      await Task.yield()
       return "\($0) is a good number." 
     })

     let task = Task { await model.getFactButtonTapped() }
     await Task.yield()
     XCTAssertEqual(model.isLoading, true)
     XCTAssertEqual(model.fact, nil)

     await task.value
     XCTAssertEqual(model.isLoading, false)
     XCTAssertEqual(model.fact, "0 is a good number.")
+  }
 }

That small change makes this test pass deterministically, 100% of the time.

Documentation

The latest documentation for this library is available here.

Credits and thanks

Thanks to Pat Brown and Thomas Grapperon for providing feedback on
the library before its release. Special thanks to Kabir Oberai
who helped us work around an Xcode bug and ship serial execution tools with the library.

Other libraries

Concurrency Extras is just one library that makes it easier to write testable code in Swift.

  • Case Paths: Tools for working with and testing enums.

  • Clocks: A few clocks that make working with Swift concurrency more testable and
    more versatile.

  • Combine Schedulers: A few schedulers that make working with Combine more
    testable and more versatile.

  • Composable Architecture: A library for building applications in
    a consistent and understandable way, with composition, testing, and ergonomics in mind.

  • Custom Dump: A collection of tools for debugging, diffing, and testing your
    application’s data structures.

  • Dependencies: A dependency management library inspired by SwiftUI’s
    “environment.”

  • Snapshot Testing: Assert on your application by recording and
    and asserting against artifacts.

  • XCTest Dynamic Overlay: Call XCTFail and other typically test-only
    helpers from application code.

License

This library is released under the MIT license. See LICENSE for details.