A wrapper module for using spaCy natural language processing library from the Ruby programming language via PyCall
ruby-spacy is a wrapper module for using spaCy from the Ruby programming language via PyCall. This module aims to make it easy and natural for Ruby programmers to use spaCy. This module covers the areas of spaCy functionality for using many varieties of its language models, not for building ones.
Functionality | |
---|---|
✅ | Tokenization, lemmatization, sentence segmentation |
✅ | Part-of-speech tagging and dependency parsing |
✅ | Named entity recognition |
✅ | Syntactic dependency visualization |
✅ | Access to pre-trained word vectors |
✅ | OpenAI Chat/Completion/Embeddings API integration |
Current Version: 0.2.3
IMPORTANT: Make sure that the enable-shared
option is enabled in your Python installation. You can use pyenv to install any version of Python you like. Install Python 3.10.6, for instance, using pyenv with enable-shared
as follows:
$ env CONFIGURE_OPTS="--enable-shared" pyenv install 3.10.6
Remember to make it accessible from your working directory. It is recommended that you set global
to the version of python you just installed.
$ pyenv global 3.10.6
Then, install spaCy. If you use pip
, the following command will do:
$ pip install spacy
Install trained language models. For a starter, en_core_web_sm
will be the most useful to conduct basic text processing in English. However, if you want to use advanced features of spaCy, such as named entity recognition or document similarity calculation, you should also install a larger model like en_core_web_lg
.
$ python -m spacy download en_core_web_sm
$ python -m spacy download en_core_web_lg
See Spacy: Models & Languages for other models in various languages. To install models for the Japanese language, for instance, you can do it as follows:
$ python -m spacy download ja_core_news_sm
$ python -m spacy download ja_core_news_lg
Add this line to your application’s Gemfile:
gem 'ruby-spacy'
And then execute:
$ bundle install
Or install it yourself as:
$ gem install ruby-spacy
See Examples below.
Many of the following examples are Python-to-Ruby translations of code snippets in spaCy 101. For more examples, look inside the examples
directory.
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("Apple is looking at buying U.K. startup for $1 billion")
row = []
doc.each do |token|
row << token.text
end
headings = [1,2,3,4,5,6,7,8,9,10]
table = Terminal::Table.new rows: [row], headings: headings
puts table
Output:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
Apple | is | looking | at | buying | U.K. | startup | for | $ | 1 | billion |
→ spaCy: Part-of-speech tags and dependencies
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("Apple is looking at buying U.K. startup for $1 billion")
headings = ["text", "lemma", "pos", "tag", "dep"]
rows = []
doc.each do |token|
rows << [token.text, token.lemma, token.pos, token.tag, token.dep]
end
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
text | lemma | pos | tag | dep |
---|---|---|---|---|
Apple | Apple | PROPN | NNP | nsubj |
is | be | AUX | VBZ | aux |
looking | look | VERB | VBG | ROOT |
at | at | ADP | IN | prep |
buying | buy | VERB | VBG | pcomp |
U.K. | U.K. | PROPN | NNP | dobj |
startup | startup | NOUN | NN | advcl |
for | for | ADP | IN | prep |
$ | $ | SYM | $ | quantmod |
1 | 1 | NUM | CD | compound |
billion | billion | NUM | CD | pobj |
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("ja_core_news_lg")
doc = nlp.read("任天堂は1983年にファミコンを14,800円で発売した。")
headings = ["text", "lemma", "pos", "tag", "dep"]
rows = []
doc.each do |token|
rows << [token.text, token.lemma, token.pos, token.tag, token.dep]
end
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
text | lemma | pos | tag | dep |
---|---|---|---|---|
任天堂 | 任天堂 | PROPN | 名詞-固有名詞-一般 | nsubj |
は | は | ADP | 助詞-係助詞 | case |
1983 | 1983 | NUM | 名詞-数詞 | nummod |
年 | 年 | NOUN | 名詞-普通名詞-助数詞可能 | obl |
に | に | ADP | 助詞-格助詞 | case |
ファミコン | ファミコン | NOUN | 名詞-普通名詞-一般 | obj |
を | を | ADP | 助詞-格助詞 | case |
14,800 | 14,800 | NUM | 名詞-数詞 | fixed |
円 | 円 | NOUN | 名詞-普通名詞-助数詞可能 | obl |
で | で | ADP | 助詞-格助詞 | case |
発売 | 発売 | VERB | 名詞-普通名詞-サ変可能 | ROOT |
し | する | AUX | 動詞-非自立可能 | aux |
た | た | AUX | 助動詞 | aux |
。 | 。 | PUNCT | 補助記号-句点 | punct |
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("Apple is looking at buying U.K. startup for $1 billion")
headings = ["text", "shape", "is_alpha", "is_stop", "morphology"]
rows = []
doc.each do |token|
morph = token.morphology.map do |k, v|
"#{k} = #{v}"
end.join("\n")
rows << [token.text, token.shape, token.is_alpha, token.is_stop, morph]
end
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
text | shape | is_alpha | is_stop | morphology |
---|---|---|---|---|
Apple | Xxxxx | true | false | NounType = Prop Number = Sing |
is | xx | true | true | Mood = Ind Number = Sing Person = 3 Tense = Pres VerbForm = Fin |
looking | xxxx | true | false | Aspect = Prog Tense = Pres VerbForm = Part |
at | xx | true | true | |
buying | xxxx | true | false | Aspect = Prog Tense = Pres VerbForm = Part |
U.K. | X.X. | false | false | NounType = Prop Number = Sing |
startup | xxxx | true | false | Number = Sing |
for | xxx | true | true | |
$ | $ | false | false | |
1 | d | false | false | NumType = Card |
billion | xxxx | true | false | NumType = Card |
Ruby code:
require "ruby-spacy"
nlp = Spacy::Language.new("en_core_web_sm")
sentence = "Autonomous cars shift insurance liability toward manufacturers"
doc = nlp.read(sentence)
dep_svg = doc.displacy(style: "dep", compact: false)
File.open(File.join("test_dep.svg"), "w") do |file|
file.write(dep_svg)
end
Output:
Ruby code:
require "ruby-spacy"
nlp = Spacy::Language.new("en_core_web_sm")
sentence = "Autonomous cars shift insurance liability toward manufacturers"
doc = nlp.read(sentence)
dep_svg = doc.displacy(style: "dep", compact: true)
File.open(File.join("test_dep_compact.svg"), "w") do |file|
file.write(dep_svg)
end
Output:
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("en_core_web_sm")
doc =nlp.read("Apple is looking at buying U.K. startup for $1 billion")
rows = []
doc.ents.each do |ent|
rows << [ent.text, ent.start_char, ent.end_char, ent.label]
end
headings = ["text", "start_char", "end_char", "label"]
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
text | start_char | end_char | label |
---|---|---|---|
Apple | 0 | 5 | ORG |
U.K. | 27 | 31 | GPE |
$1 billion | 44 | 54 | MONEY |
Ruby code:
require( "ruby-spacy")
require "terminal-table"
nlp = Spacy::Language.new("ja_core_news_lg")
sentence = "任天堂は1983年にファミコンを14,800円で発売した。"
doc = nlp.read(sentence)
rows = []
doc.ents.each do |ent|
rows << [ent.text, ent.start_char, ent.end_char, ent.label]
end
headings = ["text", "start", "end", "label"]
table = Terminal::Table.new rows: rows, headings: headings
print table
Output:
text | start | end | label |
---|---|---|---|
任天堂 | 0 | 3 | ORG |
1983年 | 4 | 9 | DATE |
ファミコン | 10 | 15 | PRODUCT |
14,800円 | 16 | 23 | MONEY |
→ spaCy: Word vectors and similarity
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("en_core_web_lg")
doc = nlp.read("dog cat banana afskfsd")
rows = []
doc.each do |token|
rows << [token.text, token.has_vector, token.vector_norm, token.is_oov]
end
headings = ["text", "has_vector", "vector_norm", "is_oov"]
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
text | has_vector | vector_norm | is_oov |
---|---|---|---|
dog | true | 7.0336733 | false |
cat | true | 6.6808186 | false |
banana | true | 6.700014 | false |
afskfsd | false | 0.0 | true |
Ruby code:
require "ruby-spacy"
nlp = Spacy::Language.new("en_core_web_lg")
doc1 = nlp.read("I like salty fries and hamburgers.")
doc2 = nlp.read("Fast food tastes very good.")
puts "Doc 1: " + doc1.text
puts "Doc 2: " + doc2.text
puts "Similarity: #{doc1.similarity(doc2)}"
Output:
Doc 1: I like salty fries and hamburgers.
Doc 2: Fast food tastes very good.
Similarity: 0.7687607012190486
Ruby code:
require "ruby-spacy"
nlp = Spacy::Language.new("ja_core_news_lg")
ja_doc1 = nlp.read("今日は雨ばっかり降って、嫌な天気ですね。")
puts "doc1: #{ja_doc1.text}"
ja_doc2 = nlp.read("あいにくの悪天候で残念です。")
puts "doc2: #{ja_doc2.text}"
puts "Similarity: #{ja_doc1.similarity(ja_doc2)}"
Output:
doc1: 今日は雨ばっかり降って、嫌な天気ですね。
doc2: あいにくの悪天候で残念です。
Similarity: 0.8684192637149641
Tokyo - Japan + France = Paris ?
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("en_core_web_lg")
tokyo = nlp.get_lexeme("Tokyo")
japan = nlp.get_lexeme("Japan")
france = nlp.get_lexeme("France")
query = tokyo.vector - japan.vector + france.vector
headings = ["rank", "text", "score"]
rows = []
results = nlp.most_similar(query, 10)
results.each_with_index do |lexeme, i|
index = (i + 1).to_s
rows << [index, lexeme.text, lexeme.score]
end
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
rank | text | score |
---|---|---|
1 | FRANCE | 0.8346999883651733 |
2 | France | 0.8346999883651733 |
3 | france | 0.8346999883651733 |
4 | PARIS | 0.7703999876976013 |
5 | paris | 0.7703999876976013 |
6 | Paris | 0.7703999876976013 |
7 | TOULOUSE | 0.6381999850273132 |
8 | Toulouse | 0.6381999850273132 |
9 | toulouse | 0.6381999850273132 |
10 | marseille | 0.6370999813079834 |
東京 - 日本 + フランス = パリ ?
Ruby code:
require "ruby-spacy"
require "terminal-table"
nlp = Spacy::Language.new("ja_core_news_lg")
tokyo = nlp.get_lexeme("東京")
japan = nlp.get_lexeme("日本")
france = nlp.get_lexeme("フランス")
query = tokyo.vector - japan.vector + france.vector
headings = ["rank", "text", "score"]
rows = []
results = nlp.most_similar(query, 10)
results.each_with_index do |lexeme, i|
index = (i + 1).to_s
rows << [index, lexeme.text, lexeme.score]
end
table = Terminal::Table.new rows: rows, headings: headings
puts table
Output:
rank | text | score |
---|---|---|
1 | パリ | 0.7376999855041504 |
2 | フランス | 0.7221999764442444 |
3 | 東京 | 0.6697999835014343 |
4 | ストラスブール | 0.631600022315979 |
5 | リヨン | 0.5939000248908997 |
6 | Paris | 0.574400007724762 |
7 | ベルギー | 0.5683000087738037 |
8 | ニース | 0.5679000020027161 |
9 | アルザス | 0.5644999742507935 |
10 | 南仏 | 0.5547999739646912 |
⚠️ This feature is currently experimental. Details are subject to change. Please refer to OpenAI’s API reference and Ruby OpenAI for available parameters (
max_tokens
,temperature
, etc).
Easily leverage GPT models within ruby-spacy by using an OpenAI API key. When constructing prompts for the Doc::openai_query
method, you can incorporate the following token properties of the document. These properties are retrieved through function calls (made internally by GPT when necessary) and seamlessly integrated into your prompt. Note that function calls need gpt-4o-mini
or greater. The available properties include:
surface
lemma
tag
pos
(part of speech)dep
(dependency)ent_type
(entity type)morphology
Ruby code:
require "ruby-spacy"
api_key = ENV["OPENAI_API_KEY"]
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("The Beatles released 12 studio albums")
# default parameter values
# max_tokens: 1000
# temperature: 0.7
# model: "gpt-4o-mini"
res1 = doc.openai_query(
access_token: api_key,
prompt: "Translate the text to Japanese."
)
puts res1
Output:
ビートルズは12枚のスタジオアルバムをリリースしました。
Ruby code:
require "ruby-spacy"
api_key = ENV["OPENAI_API_KEY"]
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("The Beatles were an English rock band formed in Liverpool in 1960.")
# default parameter values
# max_tokens: 1000
# temperature: 0.7
# model: "gpt-4o-mini"
res = doc.openai_query(
access_token: api_key,
prompt: "Extract the topic of the document and list 10 entities (names, concepts, locations, etc.) that are relevant to the topic."
)
Output:
Topic: The Beatles
Relevant Entities:
- The Beatles (PERSON)
- Liverpool (GPE - Geopolitical Entity)
- English (LANGUAGE)
- Rock (MUSIC GENRE)
- 1960 (DATE)
- Band (MUSIC GROUP)
- John Lennon (PERSON - key member)
- Paul McCartney (PERSON - key member)
- George Harrison (PERSON - key member)
- Ringo Starr (PERSON - key member)
Ruby code:
require "ruby-spacy"
api_key = ENV["OPENAI_API_KEY"]
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("The Beatles released 12 studio albums")
# default parameter values
# max_tokens: 1000
# temperature: 0.7
# model: "gpt-4o-mini"
res = doc.openai_query(
access_token: api_key,
prompt: "List token data of each of the words used in the sentence. Add 'meaning' property and value (brief semantic definition) to each token data. Output as a JSON object."
)
Output:
{
"tokens": [
{
"surface": "The",
"lemma": "the",
"pos": "DET",
"tag": "DT",
"dep": "det",
"ent_type": "",
"morphology": "{'Definite': 'Def', 'PronType': 'Art'}",
"meaning": "A definite article used to specify a noun."
},
{
"surface": "Beatles",
"lemma": "beatle",
"pos": "NOUN",
"tag": "NNS",
"dep": "nsubj",
"ent_type": "GPE",
"morphology": "{'Number': 'Plur'}",
"meaning": "A British rock band formed in Liverpool in 1960."
},
{
"surface": "released",
"lemma": "release",
"pos": "VERB",
"tag": "VBD",
"dep": "ROOT",
"ent_type": "",
"morphology": "{'Tense': 'Past', 'VerbForm': 'Fin'}",
"meaning": "To make something available to the public."
},
{
"surface": "12",
"lemma": "12",
"pos": "NUM",
"tag": "CD",
"dep": "nummod",
"ent_type": "CARDINAL",
"morphology": "{'NumType': 'Card'}",
"meaning": "A cardinal number representing the quantity of twelve."
},
{
"surface": "studio",
"lemma": "studio",
"pos": "NOUN",
"tag": "NN",
"dep": "compound",
"ent_type": "",
"morphology": "{'Number': 'Sing'}",
"meaning": "A place where recording or filming takes place."
},
{
"surface": "albums",
"lemma": "album",
"pos": "NOUN",
"tag": "NNS",
"dep": "dobj",
"ent_type": "",
"morphology": "{'Number': 'Plur'}",
"meaning": "Collections of music tracks or recordings."
}
]
}
Ruby code:
require "ruby-spacy"
api_key = ENV["OPENAI_API_KEY"]
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("The Beatles released 12 studio albums")
# default parameter values
# max_tokens: 1000
# temperature: 0.7
res = doc.openai_query(
access_token: api_key,
model: "gpt-4",
prompt: "Generate a tree diagram from the text using given token data. Use the following bracketing style: [S [NP [Det the] [N cat]] [VP [V sat] [PP [P on] [NP the mat]]]"
)
puts res
Output:
[S
[NP
[Det The]
[N Beatles]
]
[VP
[V released]
[NP
[Num 12]
[N
[N studio]
[N albums]
]
]
]
]
Ruby code:
require "ruby-spacy"
api_key = ENV["OPENAI_API_KEY"]
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("Vladimir Nabokov was a")
# default parameter values
# max_tokens: 1000
# temperature: 0.7
# model: "gpt-4o-mini"
res = doc.openai_completion(access_token: api_key)
puts res
Output:
Vladimir Nabokov was a Russian-American novelist, poet, and entomologist, best known for his intricate prose style and innovative narrative techniques. He is most famously recognized for his controversial novel “Lolita,” which explores themes of obsession and manipulation. Nabokov’s works often reflect his fascination with language, memory, and the nature of art. In addition to his literary accomplishments, he was also a passionate lepidopterist, contributing to the field of butterfly studies. His literary career spanned several decades, and his influence continues to be felt in contemporary literature.
Ruby code:
require "ruby-spacy"
api_key = ENV["OPENAI_API_KEY"]
nlp = Spacy::Language.new("en_core_web_sm")
doc = nlp.read("Vladimir Nabokov was a Russian-American novelist, poet, translator and entomologist.")
# default model: text-embedding-ada-002
res = doc.openai_embeddings(access_token: api_key)
puts res
Output:
-0.0023891362
-0.016671216
0.010879759
0.012918914
0.0012281279
...
You can set a timeout for the Spacy::Language.new
method:
nlp = Spacy::Language.new("en_core_web_sm", timeout: 120) # Set timeout to 120 seconds
Yoichiro Hasebe [[email protected]]
I would like to thank the following open source projects and their creators for making this project possible:
This library is available as open source under the terms of the MIT License.