GPU Accelerated JavaScript
GPU.js is a JavaScript Acceleration library for GPGPU (General purpose computing on GPUs) in JavaScript for Web and Node.
GPU.js automatically transpiles simple JavaScript functions into shader language and compiles them so they run on your GPU.
In case a GPU is not available, the functions will still run in regular JavaScript.
For some more quick concepts, see Quick Concepts on the wiki.
Creates a GPU accelerated kernel transpiled from a javascript function that computes a single element in the 512 x 512 matrix (2D array).
The kernel functions are ran in tandem on the GPU often resulting in very fast computations!
You can run a benchmark of this here. Typically, it will run 1-15x faster depending on your hardware.
Matrix multiplication (perform matrix multiplication on 2 matrices of size 512 x 512) written in GPU.js:
<script src="dist/gpu-browser.min.js"></script>
<script>
// GPU is a constructor and namespace for browser
const gpu = new GPU();
const multiplyMatrix = gpu.createKernel(function(a, b) {
let sum = 0;
for (let i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
const c = multiplyMatrix(a, b);
</script>
https://unpkg.com/gpu.js@latest/dist/gpu-browser.min.js
https://cdn.jsdelivr.net/npm/gpu.js@latest/dist/gpu-browser.min.js
const { GPU } = require('gpu.js');
const gpu = new GPU();
const multiplyMatrix = gpu.createKernel(function(a, b) {
let sum = 0;
for (let i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
const c = multiplyMatrix(a, b);
import { GPU } from 'gpu.js';
const gpu = new GPU();
const multiplyMatrix = gpu.createKernel(function(a: number[][], b: number[][]) {
let sum = 0;
for (let i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
const c = multiplyMatrix(a, b) as number[][];
Click here for more typescript examples.
Notice documentation is off? We do try our hardest, but if you find something,
please bring it to our attention, or become a contributor!
GPU
Settingsgpu.createKernel
Settings
GPU.js in the wild, all around the net. Add yours here!
On Linux, ensure you have the correct header files installed: sudo apt install mesa-common-dev libxi-dev
(adjust for your distribution)
npm install gpu.js --save
yarn add gpu.js
const { GPU } = require('gpu.js');
const gpu = new GPU();
import { GPU } from 'gpu.js';
const gpu = new GPU();
Download the latest version of GPU.js and include the files in your HTML page using the following tags:
<script src="dist/gpu-browser.min.js"></script>
<script>
const gpu = new GPU();
</script>
GPU
SettingsSettings are an object used to create an instance of GPU
. Example: new GPU(settings)
canvas
: HTMLCanvasElement
. Optional. For sharing canvas. Example: use THREE.js and GPU.js on same canvas.context
: WebGL2RenderingContext
or WebGLRenderingContext
. For sharing rendering context. Example: use THREE.js and GPU.js on same rendering context.mode
: Defaults to ‘gpu’, other values generally for debugging:
WebGLKernel
for transpiling a kernelWebGL2Kernel
for transpiling a kernelHeadlessGLKernel
for transpiling a kernelCPUKernel
for transpiling a kernelonIstanbulCoverageVariable
: Removed in v2.11.0, use v8 coverageremoveIstanbulCoverage
: Removed in v2.11.0, use v8 coveragegpu.createKernel
SettingsSettings are an object used to create a kernel
or kernelMap
. Example: gpu.createKernel(settings)
output
or kernel.setOutput(output)
: array
or object
that describes the output of kernel. When using kernel.setOutput()
you can call it after the kernel has compiled if kernel.dynamicOutput
is true
, to resize your output. Example:
[width]
, [width, height]
, or [width, height, depth]
{ x: width, y: height, z: depth }
pipeline
or kernel.setPipeline(true)
New in V2!: boolean, default = false
kernel()
calls to output a Texture
. To get array’s from a Texture
, use:const result = kernel();
result.toArray();
kernel(texture);
graphical
or kernel.setGraphical(boolean)
: boolean, default = false
loopMaxIterations
or kernel.setLoopMaxIterations(number)
: number, default = 1000constants
or kernel.setConstants(object)
: object, default = nulldynamicOutput
or kernel.setDynamicOutput(boolean)
: boolean, default = false - turns dynamic output on or offdynamicArguments
or kernel.setDynamicArguments(boolean)
: boolean, default = false - turns dynamic arguments (use different size arrays and textures) on or offoptimizeFloatMemory
or kernel.setOptimizeFloatMemory(boolean)
New in V2!: boolean - causes a float32 texture to use all 4 channels rather than 1, using less memory, but consuming more GPU.precision
or kernel.setPrecision('unsigned' | 'single')
New in V2!: ‘single’ or ‘unsigned’ - if ‘single’ output texture uses float32 for each colour channel rather than 8fixIntegerDivisionAccuracy
or kernel.setFixIntegerDivisionAccuracy(boolean)
: boolean - some cards have accuracy issues dividing by factors of three and some other primes (most apple kit?). Default on for affected cards, disable if accuracy not required.functions
or kernel.setFunctions(array)
: array, array of functions to be used inside kernel. If undefined, inherits from GPU
instance. Can also be an array of { source: function, argumentTypes: object, returnType: string }
.nativeFunctions
or kernel.setNativeFunctions(array)
: object, defined as: { name: string, source: string, settings: object }
. This is generally set via using GPU.addNativeFunction()
injectedNative
or kernel.setInjectedNative(string)
New in V2!: string, defined as: { functionName: functionSource }
. This is for injecting native code before translated kernel functions.subKernels
or kernel.setSubKernels(array)
: array, generally inherited from GPU
instance.immutable
or kernel.setImmutable(boolean)
: boolean, default = false
strictIntegers
or kernel.setStrictIntegers(boolean)
: boolean, default = false
- allows undefined argumentTypes and function return values to use strict integer declarations.useLegacyEncoder
or kernel.setUseLegacyEncoder(boolean)
: boolean, default false
- more info here.tactic
or kernel.setTactic('speed' | 'balanced' | 'precision')
New in V2!: Set the kernel’s tactic for compilation. Allows for compilation to better fit how GPU.js is being used (internally uses lowp
for ‘speed’, mediump
for ‘balanced’, and highp
for ‘precision’). Default is lowest resolution supported for output.Depending on your output type, specify the intended size of your output.
You cannot have an accelerated function that does not specify any output size.
Output size | How to specify output size | How to reference in kernel |
---|---|---|
1D | [length] |
value[this.thread.x] |
2D | [width, height] |
value[this.thread.y][this.thread.x] |
3D | [width, height, depth] |
value[this.thread.z][this.thread.y][this.thread.x] |
const settings = {
output: [100]
};
or
// You can also use x, y, and z
const settings = {
output: { x: 100 }
};
Create the function you want to run on the GPU. The first input parameter to createKernel
is a kernel function which will compute a single number in the output. The thread identifiers, this.thread.x
, this.thread.y
or this.thread.z
will allow you to specify the appropriate behavior of the kernel function at specific positions of the output.
const kernel = gpu.createKernel(function() {
return this.thread.x;
}, settings);
The created function is a regular JavaScript function, and you can use it like one.
kernel();
// Result: Float32Array[0, 1, 2, 3, ... 99]
Note: Instead of creating an object, you can use the chainable shortcut methods as a neater way of specifying settings.
const kernel = gpu.createKernel(function() {
return this.thread.x;
}).setOutput([100]);
kernel();
// Result: Float32Array[0, 1, 2, 3, ... 99]
GPU.js makes variable declaration inside kernel functions easy. Variable types supported are:
Number
(Integer or Number), example: let value = 1
or let value = 1.1
Boolean
, example: let value = true
Array(2)
, example: let value = [1, 1]
Array(3)
, example: let value = [1, 1, 1]
Array(4)
, example: let value = [1, 1, 1, 1]
private Function
, example: function myFunction(value) { return value + 1; }
Number
kernel example:
const kernel = gpu.createKernel(function() {
const i = 1;
const j = 0.89;
return i + j;
}).setOutput([100]);
Boolean
kernel example:
const kernel = gpu.createKernel(function() {
const i = true;
if (i) return 1;
return 0;
}).setOutput([100]);
Array(2)
kernel examples:
Using declaration
const kernel = gpu.createKernel(function() {
const array2 = [0.08, 2];
return array2;
}).setOutput([100]);
Directly returned
const kernel = gpu.createKernel(function() {
return [0.08, 2];
}).setOutput([100]);
Array(3)
kernel example:
Using declaration
const kernel = gpu.createKernel(function() {
const array2 = [0.08, 2, 0.1];
return array2;
}).setOutput([100]);
Directly returned
const kernel = gpu.createKernel(function() {
return [0.08, 2, 0.1];
}).setOutput([100]);
Array(4)
kernel example:
Using declaration
const kernel = gpu.createKernel(function() {
const array2 = [0.08, 2, 0.1, 3];
return array2;
}).setOutput([100]);
Directly returned
const kernel = gpu.createKernel(function() {
return [0.08, 2, 0.1, 3];
}).setOutput([100]);
private Function
kernel example:
const kernel = gpu.createKernel(function() {
function myPrivateFunction() {
return [0.08, 2, 0.1, 3];
}
return myPrivateFunction(); // <-- type inherited here
}).setOutput([100]);
Debugging can be done in a variety of ways, and there are different levels of debugging.
new GPU({ mode: 'dev' })
GPU.js
into development mode. Here you can insert breakpoints, and be somewhat liberal in how your kernel is developed.const gpu = new GPU({ mode: 'dev' });
const kernel = gpu.createKernel(function(arg1, time) {
// put a breakpoint on the next line, and watch it get hit
const v = arg1[this.thread.y][this.thread.x * time];
return v;
}, { output: [100, 100] });
debugger
:
const gpu = new GPU({ mode: 'cpu' });
const kernel = gpu.createKernel(function(arg1, time) {
debugger; // <--NOTICE THIS, IMPORTANT!
const v = arg1[this.thread.y][this.thread.x * time];
return v;
}, { output: [100, 100] });
const gpu = new GPU({ mode: 'cpu' });
const kernel = gpu.createKernel(function(arg1, time) {
const x = this.thread.x * time;
return x; // <--NOTICE THIS, IMPORTANT!
const v = arg1[this.thread.y][x];
return v;
}, { output: [100, 100] });
In this example, we return early the value of x, to see exactly what it is. The rest of the logic is ignored, but now you can see the value that is calculated from x
, and debug it.const gpu = new GPU({ mode: 'cpu' });
const kernel = gpu.createKernel(function(arg1, time) {
const x = this.thread.x * time;
if (x < 4 || x > 2) {
// RED
this.color(1, 0, 0); // <--NOTICE THIS, IMPORTANT!
return;
}
if (x > 6 && x < 12) {
// GREEN
this.color(0, 1, 0); // <--NOTICE THIS, IMPORTANT!
return;
}
const v = arg1[this.thread.y][x];
return v;
}, { output: [100, 100], graphical: true });
Here we are making the canvas red or green depending on the value of x
.Array
, Float32Array
, Int16Array
, Int8Array
, Uint16Array
, uInt8Array
const { input } = require('gpu.js');
const value = input(flattenedArray, [width, height, depth]);
const kernel = gpu.createKernel(function(x) {
return x;
}).setOutput([100]);
kernel(42);
// Result: Float32Array[42, 42, 42, 42, ... 42]
Similarly, with array inputs:
const kernel = gpu.createKernel(function(x) {
return x[this.thread.x % 3];
}).setOutput([100]);
kernel([1, 2, 3]);
// Result: Float32Array[1, 2, 3, 1, ... 1 ]
An HTML Image:
const kernel = gpu.createKernel(function(image) {
const pixel = image[this.thread.y][this.thread.x];
this.color(pixel[0], pixel[1], pixel[2], pixel[3]);
})
.setGraphical(true)
.setOutput([100, 100]);
const image = document.createElement('img');
image.src = 'my/image/source.png';
image.onload = () => {
kernel(image);
// Result: colorful image
document.getElementsByTagName('body')[0].appendChild(kernel.canvas);
};
An Array of HTML Images:
const kernel = gpu.createKernel(function(image) {
const pixel = image[this.thread.z][this.thread.y][this.thread.x];
this.color(pixel[0], pixel[1], pixel[2], pixel[3]);
})
.setGraphical(true)
.setOutput([100, 100]);
const image1 = document.createElement('img');
image1.src = 'my/image/source1.png';
image1.onload = onload;
const image2 = document.createElement('img');
image2.src = 'my/image/source2.png';
image2.onload = onload;
const image3 = document.createElement('img');
image3.src = 'my/image/source3.png';
image3.onload = onload;
const totalImages = 3;
let loadedImages = 0;
function onload() {
loadedImages++;
if (loadedImages === totalImages) {
kernel([image1, image2, image3]);
// Result: colorful image composed of many images
document.getElementsByTagName('body')[0].appendChild(kernel.canvas);
}
};
An HTML Video: New in V2!
const kernel = gpu.createKernel(function(videoFrame) {
const pixel = videoFrame[this.thread.y][this.thread.x];
this.color(pixel[0], pixel[1], pixel[2], pixel[3]);
})
.setGraphical(true)
.setOutput([100, 100]);
const video = new document.createElement('video');
video.src = 'my/video/source.webm';
kernel(image); //note, try and use requestAnimationFrame, and the video should be ready or playing
// Result: video frame
Sometimes, you want to produce a canvas
image instead of doing numeric computations. To achieve this, set the graphical
flag to true
and the output dimensions to [width, height]
. The thread identifiers will now refer to the x
and y
coordinate of the pixel you are producing. Inside your kernel function, use this.color(r,g,b)
or this.color(r,g,b,a)
to specify the color of the pixel.
For performance reasons, the return value of your function will no longer be anything useful. Instead, to display the image, retrieve the canvas
DOM node and insert it into your page.
const render = gpu.createKernel(function() {
this.color(0, 0, 0, 1);
})
.setOutput([20, 20])
.setGraphical(true);
render();
const canvas = render.canvas;
document.getElementsByTagName('body')[0].appendChild(canvas);
Note: To animate the rendering, use requestAnimationFrame
instead of setTimeout
for optimal performance. For more information, see this.
To make it easier to get pixels from a context, use kernel.getPixels()
, which returns a flat array similar to what you get from WebGL’s readPixels
method.
A note on why: webgl’s readPixels
returns an array ordered differently from javascript’s getImageData
.
This makes them behave similarly.
While the values may be somewhat different, because of graphical precision available in the kernel, and alpha, this allows us to easily get pixel data in unified way.
Example:
const render = gpu.createKernel(function() {
this.color(0, 0, 0, 1);
})
.setOutput([20, 20])
.setGraphical(true);
render();
const pixels = render.getPixels();
// [r,g,b,a, r,g,b,a...
Currently, if you need alpha do something like enabling premultipliedAlpha
with your own gl context:
const canvas = DOM.canvas(500, 500);
const gl = canvas.getContext('webgl2', { premultipliedAlpha: false });
const gpu = new GPU({
canvas,
context: gl
});
const krender = gpu.createKernel(function(x) {
this.color(this.thread.x / 500, this.thread.y / 500, x[0], x[1]);
})
.setOutput([500, 500])
.setGraphical(true);
Sometimes you want to do multiple math operations on the gpu without the round trip penalty of data transfer from cpu to gpu to cpu to gpu, etc. To aid this there is the combineKernels
method.
Note: Kernels can have different output sizes.
const add = gpu.createKernel(function(a, b) {
return a[this.thread.x] + b[this.thread.x];
}).setOutput([20]);
const multiply = gpu.createKernel(function(a, b) {
return a[this.thread.x] * b[this.thread.x];
}).setOutput([20]);
const superKernel = gpu.combineKernels(add, multiply, function(a, b, c) {
return multiply(add(a, b), c);
});
superKernel(a, b, c);
This gives you the flexibility of using multiple transformations but without the performance penalty, resulting in a much much MUCH faster operation.
Sometimes you want to do multiple math operations in one kernel, and save the output of each of those operations. An example is Machine Learning where the previous output is required for back propagation. To aid this there is the createKernelMap
method.
const megaKernel = gpu.createKernelMap({
addResult: function add(a, b) {
return a + b;
},
multiplyResult: function multiply(a, b) {
return a * b;
},
}, function(a, b, c) {
return multiply(add(a[this.thread.x], b[this.thread.x]), c[this.thread.x]);
}, { output: [10] });
megaKernel(a, b, c);
// Result: { addResult: Float32Array, multiplyResult: Float32Array, result: Float32Array }
const megaKernel = gpu.createKernelMap([
function add(a, b) {
return a + b;
},
function multiply(a, b) {
return a * b;
}
], function(a, b, c) {
return multiply(add(a[this.thread.x], b[this.thread.x]), c[this.thread.x]);
}, { output: [10] });
megaKernel(a, b, c);
// Result: { 0: Float32Array, 1: Float32Array, result: Float32Array }
This gives you the flexibility of using parts of a single transformation without the performance penalty, resulting in much much MUCH faster operation.
GPU
instanceuse gpu.addFunction(function() {}, settings)
for adding custom functions to all kernels. Needs to be called BEFORE gpu.createKernel
. Example:
gpu.addFunction(function mySuperFunction(a, b) {
return a - b;
});
function anotherFunction(value) {
return value + 1;
}
gpu.addFunction(anotherFunction);
const kernel = gpu.createKernel(function(a, b) {
return anotherFunction(mySuperFunction(a[this.thread.x], b[this.thread.x]));
}).setOutput([20]);
Kernel
instanceuse kernel.addFunction(function() {}, settings)
for adding custom functions to all kernels. Example:
kernel.addFunction(function mySuperFunction(a, b) {
return a - b;
});
function anotherFunction(value) {
return value + 1;
}
kernel.addFunction(anotherFunction);
const kernel = gpu.createKernel(function(a, b) {
return anotherFunction(mySuperFunction(a[this.thread.x], b[this.thread.x]));
}).setOutput([20]);
To manually strongly type a function you may use settings.
By setting this value, it makes the build step of the kernel less resource intensive.
Settings take an optional hash values:
returnType
: optional, defaults to inference from FunctionBuilder
, the value you’d like to return from the function.argumentTypes
: optional, defaults to inference from FunctionBuilder
for each param, a hash of param names with values of the return types.Example on GPU
instance:
gpu.addFunction(function mySuperFunction(a, b) {
return [a - b[1], b[0] - a];
}, { argumentTypes: { a: 'Number', b: 'Array(2)'}, returnType: 'Array(2)' });
Example on Kernel
instance:
kernel.addFunction(function mySuperFunction(a, b) {
return [a - b[1], b[0] - a];
}, { argumentTypes: { a: 'Number', b: 'Array(2)'}, returnType: 'Array(2)' });
NOTE: GPU.js infers types if they are not defined and is generally able to detect the types you need, however
‘Array(2)’, ‘Array(3)’, and ‘Array(4)’ are exceptions, at least on the kernel level. Also, it is nice to have power
over the automatic type inference system.
function mySuperFunction(a, b) {
return a - b;
}
const kernel = gpu.createKernel(function(a, b) {
return mySuperFunction(a[this.thread.x], b[this.thread.x]);
})
.setOutput([20])
.setFunctions([mySuperFunction]);
GPU.js does type inference when types are not defined, so even if you code weak type, you are typing strongly typed.
This is needed because c++, which glsl is a subset of, is, of course, strongly typed.
Types that can be used with GPU.js are as follows:
NOTE: These refer the the return type of the kernel function, the actual result will always be a collection in the size of the defined output
Types generally used in the Texture
class, for #pipelining or for advanced usage.
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < this.constants.size; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}, {
constants: { size: 512 },
output: [512, 512],
});
const matMult = gpu.createKernel(function(a, b) {
var sum = 0;
for (var i = 0; i < 512; i++) {
sum += a[this.thread.y][i] * b[i][this.thread.x];
}
return sum;
}).setOutput([512, 512]);
Pipeline is a feature where values are sent directly from kernel to kernel via a texture.
This results in extremely fast computing. This is achieved with the kernel setting pipeline: boolean
or by calling kernel.setPipeline(true)
In an effort to make the CPU and GPU work similarly, pipeline on CPU and GPU modes causes the kernel result to be reused when immutable: false
(which is default).
If you’d like to keep kernel results around, use immutable: true
and ensure you cleanup memory:
texture.delete()
when appropriate.When using pipeline mode the outputs from kernels can be cloned using texture.clone()
.
const kernel1 = gpu.createKernel(function(v) {
return v[this.thread.x];
})
.setPipeline(true)
.setOutput([100]);
const kernel2 = gpu.createKernel(function(v) {
return v[this.thread.x];
})
.setOutput([100]);
const result1 = kernel1(array);
// Result: Texture
console.log(result1.toArray());
// Result: Float32Array[0, 1, 2, 3, ... 99]
const result2 = kernel2(result1);
// Result: Float32Array[0, 1, 2, 3, ... 99]
When using kernel.immutable = true
recycling GPU memory is handled internally, but a good practice is to clean up memory you no longer need it.
Cleanup kernel outputs by using texture.delete()
to keep GPU memory as small as possible.
NOTE: Internally textures will only release from memory if there are no references to them.
When using pipeline mode on a kernel K
the output for each call will be a newly allocated texture T
.
If, after getting texture T
as an output, T.delete()
is called, the next call to K will reuse T
as its output texture.
Alternatively, if you’d like to clear out a texture
and yet keep it in memory, you may use texture.clear()
, which
will cause the texture
to persist in memory, but its internal values to become all zeros.
GPU.js supports offscreen canvas where available. Here is an example of how to use it with two files, gpu-worker.js
, and index.js
:
file: gpu-worker.js
importScripts('path/to/gpu.js');
onmessage = function() {
// define gpu instance
const gpu = new GPU();
// input values
const a = [1,2,3];
const b = [3,2,1];
// setup kernel
const kernel = gpu.createKernel(function(a, b) {
return a[this.thread.x] - b[this.thread.x];
})
.setOutput([3]);
// output some results!
postMessage(kernel(a, b));
};
file: index.js
var worker = new Worker('gpu-worker.js');
worker.onmessage = function(e) {
var result = e.data;
console.log(result);
};
GPU
use the destroy
method. Example: gpu.destroy()
Kernel
use the destroy
method. Example: kernel.destroy()
Texture
use the delete
method. Example: texture.delete()
Texture
that you might want to reuse/reset to zeros, use the clear
method. Example: texture.clear()
To use the useful x
, y
, z
thread
lookup api inside of GPU.js, and yet use flattened arrays, there is the Input
type.
This is generally much faster for when sending values to the gpu, especially with larger data sets. Usage example:
const { GPU, input, Input } = require('gpu.js');
const gpu = new GPU();
const kernel = gpu.createKernel(function(a, b) {
return a[this.thread.y][this.thread.x] + b[this.thread.y][this.thread.x];
}).setOutput([3,3]);
kernel(
input(
new Float32Array([1,2,3,4,5,6,7,8,9]),
[3, 3]
),
input(
new Float32Array([1,2,3,4,5,6,7,8,9]),
[3, 3]
)
);
Note: input(value, size)
is a simple pointer for new Input(value, size)
GPU.js packs a lot of functionality into a single file, such as a complete javascript parse, which may not be needed in some cases.
To aid in keeping your kernels lightweight, the kernel.toJSON()
method was added.
This allows you to reuse a previously built kernel, without the need to re-parse the javascript.
Here is an example:
const gpu = new GPU();
const kernel = gpu.createKernel(function() {
return [1,2,3,4];
}, { output: [1] });
console.log(kernel()); // [Float32Array([1,2,3,4])];
const json = kernel.toJSON();
const newKernelFromJson = gpu.createKernel(json);
console.log(newKernelFromJSON()); // [Float32Array([1,2,3,4])];
NOTE: There is lighter weight, pre-built, version of GPU.js to assist with serializing from to and from json in the dist folder of the project, which include:
GPU.js supports seeing exactly how it is interacting with the graphics processor by means of the kernel.toString(...)
method.
This method, when called, creates a kernel that executes exactly the instruction set given to the GPU (or CPU) as a
very tiny reusable function that instantiates a kernel.
NOTE: When exporting a kernel and using constants
the following constants are not changeable:
Array(2)
Array(3)
Array(4)
Integer
Number
Float
Boolean
Here is an example used to/from file:
import { GPU } from 'gpu.js';
import * as fs from 'fs';
const gpu = new GPU();
const kernel = gpu.createKernel(function(v) {
return this.thread.x + v + this.constants.v1;
}, { output: [10], constants: { v1: 100 } });
const result = kernel(1);
const kernelString = kernel.toString(1);
fs.writeFileSync('./my-exported-kernel.js', 'module.exports = ' + kernelString);
import * as MyExportedKernel from './my-exported-kernel';
import gl from 'gl';
const myExportedKernel = MyExportedKernel({ context: gl(1,1), constants: { v1: 100 } });
Here is an example for just-in-time function creation:
const gpu = new GPU();
const kernel = gpu.createKernel(function(a) {
let sum = 0;
for (let i = 0; i < 6; i++) {
sum += a[this.thread.x][i];
}
return sum;
}, { output: [6] });
kernel(input(a, [6, 6]));
const kernelString = kernel.toString(input(a, [6, 6]));
const newKernel = new Function('return ' + kernelString)()({ context });
newKernel(input(a, [6, 6]));
kernel.toString(...args)
You can assign some new constants when using the function output from .toString()
,
Since the code running in the kernel is actually compiled to GLSL code, not all functions from the JavaScript Math module are supported.
This is a list of the supported ones:
Math.abs()
Math.acos()
Math.acosh()
Math.asin()
Math.asinh()
Math.atan()
Math.atanh()
Math.atan2()
Math.cbrt()
Math.ceil()
Math.cos()
Math.cosh()
Math.exp()
Math.expm1()
Math.floor()
Math.fround()
Math.imul()
Math.log()
Math.log10()
Math.log1p()
Math.log2()
Math.max()
Math.min()
Math.pow()
Math.random()
Math.round()
Math.sign()
Math.sin()
Math.sinh()
Math.sqrt()
Math.tan()
Math.tanh()
Math.trunc()
This is a list and reasons of unsupported ones:
Math.clz32
- bits directly are hardMath.hypot
- dynamically sizedTo assist with mostly unit tests, but perhaps in scenarios outside of GPU.js, there are the following logical checks to determine what support level the system executing a GPU.js kernel may have:
GPU.disableValidation()
- turn off all kernel validationGPU.enableValidation()
- turn on all kernel validationGPU.isGPUSupported
: boolean
- checks if GPU is in-fact supportedGPU.isKernelMapSupported
: boolean
- checks if kernel maps are supportedGPU.isOffscreenCanvasSupported
: boolean
- checks if offscreen canvas is supportedGPU.isWebGLSupported
: boolean
- checks if WebGL v1 is supportedGPU.isWebGL2Supported
: boolean
- checks if WebGL v2 is supportedGPU.isHeadlessGLSupported
: boolean
- checks if headlessgl is supportedGPU.isCanvasSupported
: boolean
- checks if canvas is supportedGPU.isGPUHTMLImageArraySupported
: boolean
- checks if the platform supports HTMLImageArray’sGPU.isSinglePrecisionSupported
: boolean
- checks if the system supports single precision float 32 valuesTypescript is supported! Typings can be found here!
For strongly typed kernels:
import { GPU, IKernelFunctionThis } from 'gpu.js';
const gpu = new GPU();
function kernelFunction(this: IKernelFunctionThis): number {
return 1 + this.thread.x;
}
const kernelMap = gpu.createKernel<typeof kernelFunction>(kernelFunction)
.setOutput([3,3,3]);
const result = kernelMap();
console.log(result as number[][][]);
For strongly typed mapped kernels:
import { GPU, Texture, IKernelFunctionThis } from 'gpu.js';
const gpu = new GPU();
function kernelFunction(this: IKernelFunctionThis): [number, number] {
return [1, 1];
}
function subKernel(): [number, number] {
return [1, 1];
}
const kernelMap = gpu.createKernelMap<typeof kernelFunction>({
test: subKernel,
}, kernelFunction)
.setOutput([1])
.setPipeline(true);
const result = kernelMap();
console.log((result.test as Texture).toArray() as [number, number][]);
For extending constants:
import { GPU, IKernelFunctionThis } from 'gpu.js';
const gpu = new GPU();
interface IConstants {
screen: [number, number];
}
type This = {
constants: IConstants
} & IKernelFunctionThis;
function kernelFunction(this: This): number {
const { screen } = this.constants;
return 1 + screen[0];
}
const kernelMap = gpu.createKernel<typeof kernelFunction>(kernelFunction)
.setOutput([3,3,3])
.setConstants<IConstants>({
screen: [1, 1]
});
const result = kernelMap();
console.log(result as number[][][]);
Click here for more typescript examples.
Destructured Objects and Arrays work in GPU.js.
const gpu = new GPU();
const kernel = gpu.createKernel(function() {
const { thread: {x, y} } = this;
return x + y;
}, { output: [2] });
console.log(kernel());
const gpu = new GPU();
const kernel = gpu.createKernel(function(array) {
const [first, second] = array;
return first + second;
}, {
output: [2],
argumentTypes: { array: 'Array(2)' }
});
console.log(kernel([1, 2]));
Transpilation doesn’t do the best job of keeping code beautiful. To aid in this endeavor GPU.js can handle some scenarios to still aid you harnessing the GPU in less than ideal circumstances.
Here is a list of a few things that GPU.js does to fix transpilation:
myCall()
to (0, _myCall.myCall)
, it is gracefully handled.You can find a complete API reference here.
GPU.js uses HeadlessGL in node for GPU acceleration.
GPU.js is written in such a way, you can introduce your own backend. Have a suggestion? We’d love to hear it!
Testing is done (right now) manually, (help wanted here if you can!), using the following:
yarn test test/features
yarn test test/internal
yarn test test/issues
Building isn’t required on node, but is for browser. To build the browser’s files, run: yarn make
Contributors are welcome! Create a merge request to the develop
branch and we
will gladly review it. If you wish to get write access to the repository,
please email us and we will review your application and grant you access to
the develop
branch.
We promise never to pass off your code as ours.
If you have an issue, either a bug or a feature you think would benefit your project let us know and we will do our best.
Create issues here and follow the template.
This project exists thanks to all the people who contribute. [Contribute].
Thank you to all our backers! 🙏 [Become a backer]
Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [Become a sponsor]
Sponsored NodeJS GPU environment from LeaderGPU - These guys rock!
Sponsored Browser GPU environment’s from BrowserStack - Second to none!